Forced Vibration Analysis of a Cracked Visco-Elastic Beam by the Boundary Integral Equation Method

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Axially Forced Vibration Analysis of Cracked a Nanorod

Thisstudy presents axially forced vibration of a cracked nanorod under harmonic external dynamically load. In constitutive equation of problem, the nonlocal elasticity theory is used. The Crack is modelled as an axial spring in the crack section. In the axial spring model, the nonrod separates two sub-nanorods and the flexibility of the axial spring represents the effect of the crack. Boundary ...

متن کامل

Forced-Vibration Analysis of a Coupled System of SLGSs by Visco- Pasternak Medium Subjected to a Moving Nano-particle

In this study, forced-vibration analysis of a coupled system of single layered graphene sheets (SLGSs) subjected to the moving nano-particle is carried out based on nonlocal elasticity theory of orthotropic plate. Two SLGSs are coupled with elastic medium which is simulated by Pasternak and Visco-Pasternak models. Using Hamilton’s principle, governing differential equations of motion are derive...

متن کامل

Variational Iteration Method for Free Vibration Analysis of a Timoshenko Beam under Various Boundary Conditions

In this paper, a relatively new method, namely variational iteration method (VIM), is developed for free vibration analysis of a Timoshenko beam with different boundary conditions. In the VIM, an appropriate Lagrange multiplier is first chosen according to order of the governing differential equation of the boundary value problem, and then an iteration process is used till the desired accuracy ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the Japan Society of Mechanical Engineers Series C

سال: 1997

ISSN: 1884-8354,0387-5024

DOI: 10.1299/kikaic.63.1842